Shellability is NP-complete

نویسندگان

  • Xavier Goaoc
  • Pavel Paták
  • Zuzana Patáková
  • Martin Tancer
  • Uli Wagner
چکیده

We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boolean Normal Forms, Shellability, and Reliability Computations

Orthogonal forms of positive Boolean functions play an important role in reliability theory, since the probability that they take value 1 can be easily computed. However, few classes of disjunctive normal forms are known for which orthogonalization can be efficiently performed. An interesting class with this property is the class of shellable disjunctive normal forms (DNFs). In this paper, we p...

متن کامل

Bishellable drawings of Kn

The Harary-Hill conjecture, still open after more than 50 years, asserts that the crossing number of the complete graph Kn is H(n) = 1 4 ⌊ n 2 ⌋⌊ n− 1 2 ⌋⌊ n− 2 2 ⌋⌊ n− 3 2 ⌋ . Ábrego et al. [3] introduced the notion of shellability of a drawing D of Kn. They proved that if D is s-shellable for some s ≥ b 2 c, then D has at least H(n) crossings. This is the first combinatorial condition on a dr...

متن کامل

On the Bruhat Order of the Symmetric Group and Its Shellability

In this paper we discuss the Bruhat order of the symmetric group. We give two criteria for comparing elements in this poset and show that the poset is Eulerian. We also discuss the notion of shellability and EL-shellability, and use this concept to show that the order complex associated to the Bruhat order triangulates a sphere.

متن کامل

Shellability of Noncrossing Partition Lattices

We give a case-free proof that the lattice of noncrossing partitions associated to any finite real reflection group is EL-shellable. Shellability of these lattices was open for the groups of type Dn and those of exceptional type and rank at least three.

متن کامل

Obstructions to Shellability

We consider a simplicial complex generaliztion of a result of Billera and Meyers that every nonshellable poset contains the smallest nonshellable poset as an induced subposet. We prove that every nonshellable 2-dimensional simplicial complex contains a nonshellable induced subcomplex with less than 8 vertices. We also establish CL-shellability of interval orders and as a consequence obtain a fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.08436  شماره 

صفحات  -

تاریخ انتشار 2017